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Abstract. We present an interactive image and volume denoising and
segmentation tool, that allows the use of state of the art algorithms
based on the concept of total variation (TV) to be applied to 2D and
3D grey and color value data. Our aim is to provide a research tool for
experimenting with TV related methods to the medical image analysis
community. Our implementation supports the classic ROF and TVL1
denoising models, second order TV denoising variants as well as an in-
teractive segmentation based on weighted TV. The numerical optimiza-
tion procedures to solve the variational problems follow the primal-dual
scheme of Chambolle and Pock. A highly efficient GPU implementation
based on NVidia CUDA enables real-time feedback even for large vol-
umetric data sets. We will provide a binary software tool to the public
domain for interested researchers at our website and intend to perform
a live demonstration on a notebook at the MICCAI workshop.

1 Introduction

While fully automatic image processing and segmentation methods are required
in a variety of medical image analysis applications, especially in the presence of
large amounts of data to process, recent years have seen an increasing interest in
interactive image processing methods, which give immediate feedback about a
solution and allow modifying results on the fly. The benefits of an expert user di-
rectly interacting with an image processing task have been widely acknowledged
by researchers in the medical image analysis field, mostly for 2D images [1–4]
but recently also for 3D volumetric applications [5–7]. A survey on interactive
image segmentation techniques can be found in Zhao and Xie [8].

Successful interactive image segmentation tools require an easy-to-use graph-
ical user interface, immediate, real-time feedback of processing tasks even for
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Fig. 1. Screenshot of the Qt-based user interface of our image processing tool. Shows
a single slice of a liver CT data set.

large data sets, flexibility in terms of input modalities, which may be processed,
and of course the use of state of the art image analysis algorithms. Another
benefit for the research community is the publicly available access to such tools.
We present a software tool, which adheres to the requirements stated above, and
will make it available to the public domain in the form of a binary executable.
The software makes extensive use of modern NVidia graphics adapters with the
use of CUDA for implementing the core image processing parts. By using graph-
ics adapters as numerical co-processors, immediate response becomes feasible,
which facilitates efficient user interaction to solve a given image processing task.
Further key features of our contributed tool are interactive edge-preserving de-
noising, support for 2D images, 3D videos or 3D volumes, as well as greyvalue
and RGB color inputs.

2 Method

Our image processing algorithms are presented in a Qt-based 4 graphical user
interface, which can be seen in Fig. 1. The user interface enables loading and
storing of 2D and 3D data sets from image and volume file formats, as well as
image folders by specifying a directory name, which contains the individual im-
ages of a temporal time series of 2D images. We have implemented denoising and
segmentation algorithms that make use of the framework of the calculus of varia-
tions to solve convex energy functionals, specifying the desired image processing
effects. This is in contrast to the more often used graph based Markov Random
Field setup, where image processing tasks are defined in a discrete manner using
image pixels and their neighborhoods as nodes and edges in a graph, and which
can very efficiently be solved using graph cuts [2], a prominent example of this
paradigm being the GrabCut algorithm [3]. Paradigms like GrabCut are cur-
rently also implemented in commercial software like Adobe Photoshop R©, but

4 http://qt-project.org/
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restricted to 2D segmentation applications. Our decision to choose the varia-
tional framework is mainly motivated by the less memory intensive and simpler
parallelization of the partial differential equations that occur when optimizing
the occuring energy functionals. In contrast, parallelization of graph cut based
methods to directly implement them on a GPU is not straight-forward. We are
able to efficiently implement a range of methods, like edge-preserving total vari-
ation (TV) based denoising, second-order TV denoising, as well as interactive
segmentation based on a weighted TV model, using the same numerical opti-
mization algorithm proposed by Chambolle and Pock [9].

2.1 Edge-preserving denoising

A typical image processing pipeline for solving segmentation problems consists of
a denoising step followed by the interactive segmentation procedure. For denois-
ing it is crucial that high-frequency information, which is identified as noise, is
suppressed, while important edge information describing the structures of seman-
tic interest remain unchanged. For this purpose, state of the art edge-preserving
denoising models are formulated using a total variation (TV) regularization, as
first presented in computer vision by the seminal paper of Rudin, Osher and
Fatemi [10]. The model, which commonly is referred to as ROF model, formu-
lates an energy functional that penalizes deviations of the sought solution u
from the noisy input image f with an L2-norm, while the regularization penal-
izes jumps in u via the norm of the gradient of u. The corresponding energy
minimzation problem is

min
u

{∫
Ω

|∇u(x)| dx+
λ

2

∫
Ω

(u(x)− f(x))
2
dx

}
. (1)

It is well known that this edge-preserving denoising model is optimal under
the assumption of Gaussian noise. To adapt to salt and pepper noise, a slight
modification of 1 leads to the TVL1 model, where the data term also uses an
L1-norm penalty to be more robust against outliers, thus the formulation reads

min
u

{∫
Ω

|∇u(x)| dx+ λ

∫
Ω

|u(x)− f(x)| dx
}
. (2)

The only free parameter in these two energy functionals is the parameter λ,
that steers the trade-off between data fidelity and regularization (i.e., smooth-
ing). Selecting an appropriate λ for a given problem is often a try-and-error
procedure, which can benefit from immediate feedback to the user and the pos-
sibility of interactively changing the parameter. Further, the interpretation of
λ for the ROF and TVL1 models is different. Therefore, in our graphical user
interface, real-time computation and immediate feedback of the models stated
above, is crucial to speed up the search for an appropriate λ in a certain appli-
cation. Please note that our solvers based on the primal-dual scheme presented
in Section 2.3 do not require the tuning of further parameters.
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Fig. 2. Screenshot of the segmentation (in red) of the ROF denoised (λ = 10) liver
slice, which was produced by placing a foreground seed stroke (yellow) into the liver
and removing some parts in the background (blue).

2.2 Interactive segmentation

Our interactive segmentation method is initialized by one of the denoising ap-
proaches stated in Section 2.1. Based on geodesic active contours (GAC) [11],
it follows a convex weighted total variation (wTV) formulation according to the
work of Bresson et al. [12] and its adaptation in [4]. Although the convex model is
only an approximation to the GAC energy, since for the original GAC u ∈ {0, 1}
has to hold, while the approximation relaxes this non-convex set to u ∈ [0, 1],
in practice the choice of a threshold for u, thus binarizing the result again, is
not critical and may safely be assumed fixed to 0.5. The corresponding energy
minimization functional is

min
u

{∫
Ω

g(x) |∇u(x)| dx+ λ

∫
Ω

u(x)f(x) dx

}
. (3)

One can immediately see the similarity to the denoising approaches in Sec-
tion 2.1, and indeed the numerical optimization of the segmentation functional
can be performed in the same primal-dual framework. The expression g(x) in 3
resembles the influence of the gradients of the input image, while f(x) describes
user-specified seed values or a pre-computed classification into fore- and back-
ground pixels. Due to the energy minimization, 3 tries to assign the foreground
value 1, where f is negative, and the background value 0, where f is posi-
tive. Thus, modeling hard fore- and background constraints with f = −∞ and
f = +∞, respectively, is beneficial. Figure 5 shows an example for a 2D liver
slice segmentation task.

For the computation of g(x) we implemented a simple scheme, which can
be efficiently performed on the fly during the numerical optimization. We define

g(x) = exp−α|∇I(x)|
β

, where α, β are tunable parameters steering the mapping
of input intensity I gradients to the range between zero and one. Note that in
regions with a strong edge, g(x) tends to zero to attract the final solution u to
the edges. Combining constraints f and image gradients g in this way results in a
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convex optimization scheme, where the user can interactively draw seed regions
into an image and the solution will be located on the edges, while at the same
time minimizing the total segmentation contour length (2D case) or surface area
(3D case). In total for the wTV segmentation we have several parameters to
tune (λ, α, β), thus an interactive user interface giving immediate feedback on
the segmentation result with the possibility to remove unwanted parts using the
background seed interaction is very valuable.

2.3 Implementation details

Primal-dual optimization To solve the energy functionals from Sections 2.1
and 2.2, the numerical primal-dual optimization scheme from Chambolle and
Pock [9] is used. It describes a very general algorithm for solving convex problems
with a saddle-point structure. With their proven convergence rate of O(1/N) and
even O(1/N2) for problems where either data or regularization term is uniformly
convex (e.g., ROF), they are very well suited for a highly efficient parallelized
implementation on a GPU, due to the simple convolution-like operations that
occur after discretizing the partial differential equations (PDE) that resemble
the optimal solution. In their algorithm discrete total variation is formulated as
a linear operator K and a generic saddle point problem

min
u∈X

max
p∈Y
〈Ku, p〉+G(u)− F ∗(p) . (4)

is solved. Functions G and F correspond to convex functions describing one of
the denoising and segmentation models. We refer to u as the scalar-valued primal
variable, and p as the vector-valued dual variable. X and Y are appropriate
vector spaces. For more theoretical details please refer to [9].

From a practical point of view, we have to solve a gradient descent in the
primal variable, and a gradient ascent in the dual variable. Primal and dual
updates are tightly coupled, i.e., the update of u requires the divergence of p and
the update of p requires the gradient of u in the ROF, TVL1 and wTV models.
This can be seen in Algorithm 1 in [9]. Unfortunately, the algorithm is rather
memory intensive, e.g., for the 3D ROF denoising model we require in addition to
the input and output volumes three volumes for the dual variable p and a copy of
the output volume u0 for the over-relaxation step. The primal-dual algorithm is
implemented on a GPU to benefit from the massive parallelization possible by the
NVidia CUDA programming model. Since our generic implementation needs to
be flexible and also work for large volumetric data (possibly with multi-channel
input like in the case of color videos), we have decided to implement primal-dual
updates with a strategy of overlapping grid blocks and perform it in a red-black
manner similar to implementations of the Gauss-Seidel method. By using the
shared memory of the GPU we can get rid of the intermediate volume u0, it
is solely computed locally and stored in shared memory during iterations, thus
only three intermediate volumes for the vectorial dual variable p are required.
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Fig. 3. Bone segmentation using the interactive segmentation tool. After ROF denois-
ing, fore- and background seeds specify the hand bones (left). After labeling the bones
we show a 3D rendering of hand (right).

2D,3D and color video support Our software is generic and flexible in the sense
that we support two- and three-dimensional data for all our algorithms as well
as single channel intensity and multi-channel RGB inputs. Each channel may
contain more than 8 bit of intensity resolution due to an internal representation of
the channels as floating point values between zero and one. This is a limitation of
the current prototype, since the floating point representation is not very memory
efficient. We treat all input data as three-dimensional data, with 2D images
being represented as a volume with a single slice. This way we can use the same
algorithms for 2D and 3D data.

Color input is handled differently for denoising and segmentation algorithms.
For edge-preserving color data denoising, we use the simplest possible vectorial
TV model by splitting the three channels into separate single-channel denoising
tasks, i.e., completely independently denoising the RGB channels. For segmen-
tation, we compute image gradients from the color images, but later perform the
minimization of 3 solely using a single-channel algorithm.

3 Experiments

We have performed several experiments to demonstrate the applicability of our
software tool. We intend to demonstrate certain features of our tool during the
MICCAI IMIC Workshop. Here we give an overview of three medical image seg-
mentation tasks we have successfully used the tool for recently, which are volu-
metric MRI bone segmentation, neuron dendrite segmentation from microscopy
image stacks, and glottis segmentation from laryngeal high speed color videos.

3.1 MRI bone segmentation

To generate ground truth for a learning based bone segmentation approach, we
have interactively segmented a training set of T1 weighted hand MRI volumes.
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Fig. 4. Neuron dendrite segmentation using the interactive segmentation tool (left).
3D rendering of the segmented structure (right).

The interactive segmentation is performed by placing foreground seeds into the
bones after a ROF denoising step with λ = 10. Small parts which grow together
can easily be fixed with the background seed brush. See Fig. 3 for an illustration.

3.2 Neuron dendrite segmentation

Modeling the neuronal circuit is an important question in cell biology. In this
application we are given a stack of SEM microscopy images of grasshopper brain
samples and want to perform a segmentation of the 3D neuronal structures
including their dendrites. Fig. 4 illustrates this task.

3.3 Segmentation of high speed glottis videos

In this application we are confronted with the need to segment the glottis from
laryngeal high speed videos with the goal of detecting voice disorders from a
frequency analysis of the temporal glottis vibration. Due to the large amount of
frames in such high-speed videos, we have come up with an automatic method
for glottis segmentation [13], that is illustrated in Fig. 4. We use the interactive
segmentation tool to load this segmentation, inspect it for errors and correct
them using the wTV model.

Fig. 5. Automatic glottis segmentation pipeline [13]. We perform an interactive seg-
mentation on subsequent blocks of the spatiotemporal volume to correct segmentation
errors.
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4 Conclusion

In this work we have shown our software tool for performing interactive de-
noising and image/volume segmentation. It works on single and three-channel
(RGB) input data, allowing the segmentation of images, volumes from tomo-
graphic or microscopic imaging devices, as well as videos, which are interpreted
as a spatiotemporal volume. Key features of our tool are the highly efficient
NVidia CUDA implementation, that allows to solve the PDEs from the energy
functionals in parallel. This enables immediate user feedback, which is the key
component in interactive segmentation. The proposed software will be published
online as a binary Windows tool that requires a recent NVidia graphics adapter
and a live demonstration will be given at the MICCAI IMIC workshop.
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