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Abstract. White matter (WM) segmentation from T1-weighted MRI
is complicated by intensity non-uniformities, noise, and WM’s high sur-
face area to volume ratio. Accurate algorithms are often computationally
intensive and time consuming, precluding interactivity and routine clin-
ical use. To address this we developed a work- and step-efficient parallel
narrow-band level set algorithm and mapped this onto commodity GPU
hardware. Our algorithm can segment brain WM in 3 seconds. How-
ever, it requires expert tuning of 3 parameters. Here we describe recent
efforts to improve the precision, accuracy and simplicity of WM seg-
mentation by: a) intelligently initializing algorithm parameters; and, b)
allowing interactive parameter tuning during algorithm execution, along
with real-time 2D and 3D visualization of parameter effects on segmen-
tation results.
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1 Introduction

MRI provides high spatial resolution and soft tissue contrast. Consequently, it
is widely used for research and clinical neurological studies. Changes in brain
morphometry have been linked to childhood development, healthy aging, neu-
rological disorders, and psychiatric disorders. In particular, white matter (WM)
develops dramatically through infancy [7] and undergoes significant atrophy as
part of healthy aging [6]. WM volume changes can be a very sensitive (if not
specific) indicator of Alzheimer’s disease and other disorders [8I13].

In the past two decades, a wealth of MR image segmentation algorithms have
been developed for automatic or semi-automatic segmentation of WM and other
brain structures. Segmentation techniques range from intensity thresholding,
to region-based or edge-based methods, to active contour models and level set
methods. Despite advances in theoretical approaches, clinics and clinical research
laboratories still rely heavily on trained technicians manually delineating regions
of interest on each 2D cross-section and then extrapolating to 3D surfaces [2]. The



computation time required for many sophisticated algorithms precludes routine
clinical use.

Minimally interactive, user-initiated approaches with manual refinement are
often proposed as an ideal solution [2]. Among these algorithms, the level set
approach is popular because of its flexibility and robustness [T4/T1]. The level
set (and most region growing) approaches begin with a user-placed seed region
of interest (ROI), for example in the WM on the image. The algorithm then
iteratively deforms the seed ROI to encompass the entire ‘related’ area, in our
scenario, the entire WM. In addition to the seed region, several algorithm pa-
rameters explicitly and intrinsically control the growth and smoothness of the
ROT surface. These may include the relative weights of external forces acting on
the contour, intensity threshold(s), and a surface smoothness parameter.

Even when the user specification of parameters is well-managed and stream-
lined (such as in ITK-SNAP [I6], a popular semi-automatic segmentation tool),
long computation times preclude a truly ‘interactive’ approach to segmentation.
This is particularly true for level sets - the delay between parameter adjustments
and outcomes prohibits fine tuning. Approaches to streamline parameter adjust-
ment into a sequential process provides a false sense of fine tuning as the coarse
parameters become unavailable baring a fresh start.

A recent work- and step-efficient GPU implementation of the level set method
[12] has provided a 14x acceleration over the best previously published GPU ap-
proach [I0]. A validation study of brain tumor segmentation with the new algo-
rithm showed tumor segmentation times averaging just 1:20 (mm:ss). This was
slightly faster than diameter-based approaches frequently used in clinical trials,
yet provided volume quantification results statistically equivalent to a consen-
sus of manual, slice-by-slice, contour delineations by experts (gold standard) [4].
Furthermore, the speed function used in those studies [12/4] to control the level
set surface evolution required specifying only three parameters (intensity win-
dow and level and a growth penalty based on surface smoothness). Nevertheless,
tuning each parameter to obtain acceptable results required user experience and
intuition. Interactive parameter adjustment during algorithm execution, coupled
with real time visual feedback of parameter effects on segmentation results, can
significantly narrow the intuition gap between novice and experienced users. This
is particularly true for high contrast spherical structures (e.g., meningiomas).
MRI intensity inhomogeneity, noise, and the complicated surface structure of
WM hinders effective parameter selection and, in turn, rapid and accurate brain
WM segmentation.

In this paper, we describe a novel approach to initializing the three parame-
ters for GPU level set segmentation of WM in T1 weighted MRI brain images,
directly, without user input of specific thresholds or values. Initially, users mark
foreground and background seed pixels using a paint-brush style interface. A
fuzzy classification model of the seed ROI intensities then controls the local
growth and contraction of the level set. Next, we use an empirically determined
relationship between curvature, segmentation accuracy, and image noise to pre-
dict the optimal curvature influence. Finally, the graphical user interface permits



visualizing the growth of the level set curve as it is computed and permits ad-
justment of the curvature parameter in real time while observing the surface
progression in two or three dimensions. Each of these aspects is reviewed in
the Methods (Section 2) prior to coverage of our white matter segmentation re-
sults (Section 3) and a brief discussion (Section 4). Videos of our tool and other
additional materials have been provided online as well (see Section 5).

2 Methods

2.1 Level Sets

Level set methods embed an implicit surface within an image, and iteratively
deform the surface to envelop the ROI. Several comprehensive reviews of level
set methods and their application to image segmentation are well-documented
in the medical image analysis literature [14]. Here we review the formulation
relevant to our algorithm.

The implicitly represented level set surface is defined as {x|¢(x,t) = 0},
where x is a coordinate in the image volume, t is the current iteration time in
the level set evolution, and ¢(x,t) : R* — R refines the level set according to:

P(x,t) = p(x,t — At) + Vit - F(x,1)|Vo(x,t — At)]. (1)

A speed function F'(x) defines the rate of motion of each local point on the
implicit surface. The deforming direction of each point is along the norm of
the local surface. Our previous GPU level set algorithm [I2] adopted the speed
function proposed in [10]:

F(x,t) = aC(x,t) + (1 — a)D(x), (2)

where C(x,t) is the curvature term, D(x) is the data term, and « € [0, 1], the
weight of curvature term, is a blending term that controls the relative contribu-
tion of the curvature and data terms.

The data term used in [10] is a function of intensities in a single image volume:

D(x) = e = [I(x) = T|, 3)

where I(x) is the image intensity at location x, T' is a user-specified target
intensity that encourages maximum level set growth, and € is a user-specified
parameter that indicates the range of intensities around 7" that will promote level
set growth. If T'— € < I(x) < T + ¢, then D(x) will promote surface growth.
Otherwise it will promote surface contraction.

The curvature term C(x,t) depends upon the mean curvature of the local
surface from the previous iteration:

Vo(x,t — At)

C(X,t)ZV'm~ (4)



Penalizing curvature prevents critical leakage through weak boundaries and fills
holes caused by noise inside the segmented region. Excessive smoothing by overly
penalizing curvature (assigning larger value to «) can significantly distort the
shape of target objects. Eventually, when « is too large (close to 1), the level set
surface will shrink to a point.

The speed function defined by Eq. [2]relies on three user-specified parameters:
a, €, and T. T and e define the local intensity force; o defines the contribution
of the curvature term. In this paper, we describe a non-parametric approach for
specifying the data term, replacing 1" and e with user seeding of foreground and
background pixels. We further suggest an approach to initializing « based on the
application (WM segmentation in T1 weighted MR) and image noise, thereby
minimizing non-intuitive user input.

2.2 Non-parametric data term

We propose a novel non-parametric data term (in place of Eq. [3) based on the
k nearest neighbor (k-NN) algorithm [5]. A-NN algorithms classify objects by
assigning the label of majority among the k nearest training samples in feature
space. The training data contain samples belonging to either foreground or back-
ground. This introduces the added requirement for users to seed both foreground
and background voxels. The data term is then defined as a function of relative
distance (intensity difference) to the background and foreground classes.

For voxel x with intensity I(x), the distance to background dp(x) and dis-
tance to foreground dp(x) samples are assigned as the mean of distances to the
kp and kr nearest background and foreground samples:

kB

dp (%) = éZu(x) Vs (5)
k=1
kr

dr(x) = 1 311060 = Ve (B, (6)
k=1

kp =+vNp and krp = /N, where Ng and Np are the numbers of background
and foreground samples respectively. Vg and Vg are sorted feature (intensity)
vectors of background and foreground samples.
The new data term is formed based on both distances:
dp(x) — drp(x)

. F
D(x) = dp(x) + dr(x)’

and is in the range [—1, 1]. Positive values indicate the voxel is closer to the fore-
ground class, and negative values indicate the voxel is closer to the background
class. The function is zero-valued when the distances to both classes are equal.
Substituting Eq. [7] for Eq. [3] eliminates user-defined parameters 7" and e.

(7)



2.3 Curvature Weighting Term

In Eq.[2] the user-controlled weighting parameter o determines the relative cost
of increased curvature. Changes in « over the full theoretical range of values (« €
(0,1)) can significantly impact the segmentation results. For a given application
the reasonable range of values for o can be greatly reduced and the initial value
for a can be automatically assigned more intelligently than, for example, setting
an arbitrary starting point (e.g., & = 0.5). This places the user into a fine-
tuning and final adjustment role that requires less time, training, and improves
the overall algorithm precision. In Section [3.2] we briefly review experiments used
to define the optimal starting value for « for based on an empirical relationship
between curvature, image noise, and WM segmentation accuracy (Figure [4]).

2.4 Software and User Interface

Our tool provides an interactive rendering window with 2D axial or 3D views.
Users can quickly switch between 2D and 3D view modes with a shortcut key.
In the 3D view, our tool renders the image volume as well as the segmentation
results, allowing qualitative validation.

In the first step of the segmentation, users initialize the level set by sketching
seed points on axial slices with a paint-brush tool. Users are required to label
background samples (out of the targeted ROI) and foreground samples (in the
targeted ROI). After pressing the “play” button, the level set iteratively grows
to envelop the structures of interest. Due to our unique GPU implementation,
both the level set and visualization algorithms share data buffers. This allows
interactive tuning of algorithm parameters along with real-time 2D or 3D visu-
alization of the parameter effects on segmentation results. Users can go back to
the previous segmentation step using the undo button. In addition, users can
manually edit the segmentation results (adding or erasing) using a paint-brush
tool with an adjustable width parameter in the 2D axial slices.

3 Results

3.1 White Matter Segmentation

We performed WM segmentation on synthetic MRI brain phantoms generated
from the BrainWeb Simulated Brain Database [II3]. The BrainWeb phantoms
are available with a variety of realistic noise characteristics and the ground truth
classification of each voxel is known. We tested on six noise levels (SNR = oo,
100, 33, 20, 14, 11) with 0% RF inhomogeneity, used eight sets of seed points,
and sixteen « values ranging from 0 to 0.30 (step-size of 0.02). RF inhomogeneity
was not varied due to the availability of effective approaches to bias correction
[15]. The eight sets of seed points were placed by 3 independent users and saved
for repeated measurements. In total 768 WM segmentations were performed (6
SNR levels x 8 sets of seed regions x 16 « values). For each segmentation, accu-
racy was evaluated relative to the BrainWeb classification (truth) by computing
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Fig. 1. The 3D view of level set propogation in BrainWeb data (SNR = 33 and RF
= 0%). The overall accuracy (Dice coefficient) of level set segmentation of white mat-
ter across the entire brain was 97%. The GPU level set (including kNN computation)
required 3s to execute. Total segmentation time, inlcuding data loading and user in-
teraction, was 20s.
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Fig. 2. The difference between our level set segmentation and Brainweb ground truth,
in the axial slice with the greatest number of errors.



Case 3

Fig. 3. Level set results on patient images. The figures in the left column show the
axial slices (selected to be at a location similar to Fig. [2| The right column shows the
segmentation results obtained using our method.



Dice’s coefficient (Dice), a measure of spatial overlap ranging from 0 to 1, with
1 indicating perfect overlap.

3.2 Optimized curvature term: «
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Fig. 4. The relationship between accuracy, SNR, and « for 768 WM segmentations of
BrainWeb T1-weighted MR phantoms. A surface plot (left), shows the mean Dice’s co-
efficient (accuracy) (z-axis) for different SNR values (x-axis) and curvature parameters
(y-axis). We then fit a function along the path of peak accuracy in this surface. The
resulting 3rd order polynomial (right) allows us to estimate the « value that maximizes
accuracy for a particular image noise level o2.

Plotting the Dice’s coeflicient for each of the segmentation experiments de-
scribed above allowed us to establish an empirical relationship between the image
noise, «, and accuracy (Figure . Using this relationship, the initial curvature
weight, a;nt, can be selected (based on estimates of image noise) according to
a third degree polynomial (determined by a curve fitting algorithm):

Qinit = f(02) = —0.001(02)® + 0.0133(02)? — 0.015402 4 0.08 (8)

For clinical data with unknown noise, the estimated noise variance, o2 = 1/SNR,
can be computed using the fast noise estimation method proposed by Immerker
[9]. The curvature parameter can then be initialized using Eq. [§| without any
user experience or intuition (users are still able to tune « afterward).

Over the range of image noise levels evaluated, the value for « (taken from the
discrete subset tested) corresponding to the average (over the eight seed point
sets) of the peak Dice coefficients varied considerably (Table. In contrast, the
optimal « for each seed point set in a fixed noise level varied much less and the
fine-tuning of « from the noise-based initial value to the experimentally-defined
optimal « had limited impact on the accuracy (Table .



Table 1. The maximum Dice and corresponding « for each SNR value tested. The
optimal « values range from 0.08 to 0.3.

SNR 100 33 20 14 11
Max. Dice|0.9712(0.9674|0.9550]0.9419]0.9310
o 0.08 | 0.12 | 0.22 | 0.28 | 0.3

Table 2. The maximum Dice and corresponding « for each set of input seed points
when SNR=33. For comparison, the accuracy for fixed o = 0.12 is also provided.

User 1 2 3 4 5 6 7 8
Max. Dice 0.9669]0.9683|0.9682(0.9679(0.9683|0.9671[0.9664|0.9657
« 0.06 | 0.10 | 0.12 | 0.12 | 0.12 | 0.14 | 0.12 | 0.14
Dice (o = 0.12)]0.9668]0.9683|0.9682(0.9679|0.9683|0.9671|0.9664|0.9656

4 Discussion

Requiring users to adjust parameters increases segmentation variability, and in-
convenience. Iterative refinement of parameters may also increase segmentation
time. In general, the tuning process requires expertise and hinders use in clinical
settings. Our new approach provides precise, accurate, rapid and simple WM
segmentation in T1-weighted brain MR scans. It does not require prior knowl-
edge of appropriate parameter values, nor extensive parameter tuning to obtain
acceptabale results. We accomplished this through three novel contributions: 1) a
GPU level set speed function driven by a non-parametric k-NN data model built
from the seed ROI intensities; 2) a new empirical relationship between WM seg-
mentation accuracy, image noise, and the level set curvature parameter, «; and,
3) a GPU implementation where both the level set and visualization algorithms
share data buffers. This allows interactive tuning of algorithm parameters along
with real-time 2D or 3D visualization of the parameter effects on segmentation
results.

Future efforts will focus on validating our method for WM segmentation in
other imaging modalities, such as T2-weighted MRI. We will also extend the
method for segmentation of brain gray matter and ventricles.

5 Supplementary material

We have used our tool to segment a variety of objects from MR and CT datasets.
A video of our tool segmentating brain WM (from T1-weighted MRI) and brain
vasculature (from contrast enhanced CT) is available here: http://goo.gl/
2K98Gs.
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