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Abstract. An accurate segmentation of anatomical structures in 3D
medical images is an essential step for many clinical and scientific tasks.
Since the manual delineation in single slices can be very time-consuming
and cumbersome, a lot of research on semi- or fully automated segmen-
tation methods is performed. However, many of these 3D techniques can
have drawbacks in practical use, e.g. requiring a complex initialization or
failing on images of lower quality, which can occur frequently in routine
use. In this work we introduce a fully interactive 3D segmentation for
the Medical Imaging Interaction Toolkit (MITK). It is based on a 3D
surface interpolation using radial basis functions and is seamlessly inte-
grated into the manual segmentation toolset of MITK. We additionally
extended the segmentation tools to allow the delineation of contours in
arbitrary orientations, which introduces the possibility to capture the
shape of the region of interest with a minimum number of contours. Use
cases then demonstrate the improved segmentation workflow based on
the proposed methods.

1 Introduction

The segmentation of anatomical structures is an important requirement for var-
ious tasks like assessment and quantification of target structures or visualization
and model creation e.g. for image-guided interventions or medical simulations.
While fully or semi-automated segmentation techniques deliver good results in a
short amount of time they are often restricted to certain imaging modalities or
anatomical structures or they require arguably complex initialization. Although
they are a prevalent topic of research one must not disregard the pure manual
segmentation. For many use cases the manual delineation of target structures
like it is done in the field of radiotherapy is still the means of choice. Furthermore
manual expert segmentations are needed for the validation of (semi-) automated
algorithms. However the manual segmentation can be time-consuming and cum-
bersome depending on the region of interest and the segmentation tools at one’s
disposal.

Maleike et al. introduced in [1] a comprehensive manual segmentation frame-
work for the Medical Imaging Interaction Toolkit (MITK) an open source cross-
platform application framework and software library for medical imaging [2]. A
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shape-based 2D interpolation for parallel slices was applied in order to reduce
the time needed for a manual segmentation.

In this work we introduce an interactive 3D segmentation for MITK which is
based on a 3D surface interpolation using radial basis functions (RBFs). To fully
leverage the potential of this approach, the existing segmentation framework was
extended to allow for 2D segmentation in arbitrary orientations, which makes
it easier to capture the shape of the region of interest using a small number of
contours.

The design of the 3D segmentation was influenced by an in-house usability
survey of the segmentation framework of MITK, which was conducted by us.
The survey comprised five users consisting of biologists, physicists and physicians
being differently adept at using the segmentation in MITK. During the survey
beside user interviews also questionnaires and user observations were done. The
results of the survey identified the following key requirements and expectations
for an image segmentation application:

1. Save the current state, continue after application restart
2. Undo/redo the latest actions
3. Easy navigation through the dataset

2 Related work

Medical image segmentation is addressed by various applications. 3D Slicer [3],
Seg3D1 and ITK Snap [4] for example are open source, cross platform appli-
cations, which come with some manual or semi-automated segmentation tools
whereas none of them provides a fully interactive 3D segmentation.

RBFs are used by Wimmer et al. [5] for interpolating the surface based on
control points that can be placed by the user. In a second step the interpolation
result is then used as an initialization of a level set algorithm.

TurtleSeg2, a closed source application which is freely available for Windows,
uses a 3D live wire algorithm which was introduced by Hamarneh et al. [6]. The
user can delineate contours using a 2D live wire tool and at any time trigger
the 3D live wire algorithm, which computes a 3D reconstruction based on the
provided contours. Additional TurtleSeg has a feature called Spotlight, which
was introduced by Top et al. [7]. Spotlight constitutes a user guidance for plac-
ing contours by highlighting regions where the current 3D segmentation has a
potential high deviation from the underlying region of interest.

Another approach is the one proposed by Heckel et al. [8] which was developed
using MeVisLab.3 They use highly optimized variational interpolation for surface
reconstruction based on user drawn contours. The segmentation is pure contour-
based which is why it is not possible to cut out inner parts e.g. to interpolate
hollow structures.

1 Seg3D: www.seg3d.org
2 TurtleSeg: www.turtleseg.org
3 MeVisLab: http://mevislab.de
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3 System description

In this section we give a brief overview about the MITK Workbench, an appli-
cation that is used for performing the interactive 3D segmentation. Furthermore
we describe the segmentation tool framework which was introduced by Maleike
in [1] and how we extended it in order to provide a fully interactive 3D segmen-
tation.

3.1 The MITK Workbench application

MITK includes a ready-made application - the MITK Workbench - a highly
extendable and customizable end user application which provides a number of
plugins for medical imaging [2]. It offers extensive functionality for visualizing
and processing medical image data from various modalities as well as related
data like surfaces or landmarks. For data navigation the MITK Workbench has
among other means the so called multiwidget, a multiplanar reconstruction view
where the data is displayed. It consists of four renderwindows, three of them
display the data in 2D and one displaying the scene in 3D. In each 2D window
the other sectional planes are rendered as a crosshair which can be moved or
rotated by the user in order to easily navigate through the current dataset.

3.2 Enhancement of MITK’s interactive segmentation framework

Maleike introduced in [1] a sophisticated class framework for manual segmenta-
tion tools in MITK. By using one of the 2D segmentation tools like live wire,
region growing or simply a contouring tool, the user can create new contours for
a selected image slice. This contour is converted to a binary mask and written
back into the image. However the tools could only be applied to the reference
anatomical planes, i.e. no manual segmentation in oblique planes was possible.
In order to allow the user to capture the shape of the segmented structure using
just a few contours we enhanced the tool framework so that manual contouring
in arbitrary orientations is possible. Therefore we unified the way of how the
images are rendered and the way of how the slices are extracted from the image
volume during a segmentation. For resampling an arbitrary slice from a volume
the vtkImageReslice4 is used which allows the extraction of slices from any ori-
entation. For writing the segmented slice back into the image volume we derived
from vtkImageReslice and implemented analogously a version that writes back
a slice instead of extracting it, maintaining the correct voxel mapping.

Another limitation was that the contour information itself was discarded after
the slice was written back into the image. Hence we extended the framework such
that the delineated contours are kept and can be persisted across application
restarts. In case of segmentation tools that are not contour based, e.g. a simple
thresholding tool, we extract the contour points from the corresponding 2D slice.

4 VTK: www.vtk.org
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In that way every slice based segmentation tool can be used for the proposed
3D segmentation.

These steps constitute essential preparatory work for realizing an interactive
and usable 3D segmentation, which is in line with the requirements derived
from the user survey. Fig. 1 shows the segmentation in rotated planes and the
displayed contour information in 3D.

Fig. 1. Segmentation of the spleen in rotated orientation. In the coronal window on
the left the rotated intersection plane is displayed as green line. The right image shows
the sectional planes of the image and the contours that were drawn as black lines in a
3D scene.

3.3 The 3D segmentation

For the 3D segmentation the existing contour points are used for interpolating
a 3D surface. Therefore we represent the surface in an implicit way using a
signed distance function. By definition of the distance function the distance
value zero is assigned to the provided contour points. In order to guarantee
a valid interpolation result we have to compute off-surface points that have a
certain distance to the surface. For this we approximate the normals for the given
contour points and add, respectively subtract them from the according contour
point. Points inside the surface will get distance values less than zero and vice
versa for points outside the surface. The interpolation itself is then done using
radial basis functions similar to the approach of Carr et al. [9] which has the
advantage that there is no restriction to the position of the contours which allows
arbitrary orientations. The distance function in our case is defined as follows:
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d(x) =

n∑
i=1

λi · Φ(||x− xi||2)


< 0, if x lies inside the surface

= 0, if x lies on the surface

> 0, if x lies outside the surface

(1)

Hereby x is the image coordinate for which the distance value has to be
calculated, n is the number of existing contour and off-surface points, λi are the
interpolation weights and Φ is the biharmonic RBF. The interpolation weights
are determined by solving the following equation system where ci stands for the
distance value of given the contour or off-surface points xi:

Φ(||x1 − x1||2) Φ(||x1 − x2||2) . . . Φ(||x1 − xn||2)
...

...
. . .

...
Φ(||xn − x1||2) Φ(||xn − x2||2) . . . Φ(||xn − xn||2)

 ·
λ1...
λn

 =

c1...
cn

 (2)

The zeros of the interpolated distance function describe the pathway of the
interpolated 3D segmentation. Using the distance function we calculate a dis-
tance image that encloses the segmented area.

In order to reduce the computational time for the interpolation several mea-
sures for optimization were taken. First of all we reduce the number of points
for each contour. Therefore we use the algorithm of Douglas et al. [10] which
reduces the points according to a defined error tolerance. However the method of
Douglas et al. delivers far to little sampling points, which has a negative effect on
the interpolation result. To address that we modified the method of Douglas et
al. so that in addition to the reduction still a regular distribution of the contour
points is guaranteed.

Second we do not calculate the distance values for the whole image but start
at a given contour point and move through the image along a narrow band similar
to a region growing. Pixels with a distance value above a defined threshold will
immediately be discarded. For both the contour point reduction and the distance
value calculation the tolerance thresholds are set according to the minimum pixel
spacing of the underlying image.

Since simultaneously to the contour points also the according binary segmen-
tation exists we can easily determine whether a given point is inside or outside
the desired segmentation and hence basically any shape can be interpolated, even
hollow structures. Fig. 2 shows the interpolation of a pipe which was delineated
free-handed.

3.4 Measures for usability

In this section we describe the measures, which were taken in order to meet
the requirements which were identified by the usability survey mentioned above.
Since the user at any time has the possibility to edit an existing contour we have
to keep track of both the contour and its position so that the stored contours
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Fig. 2. The interpolation of a pipe, which demonstrates that our approach even works
for hollow structures. The contours for this purpose were drawn free-handed.

always correspond to the binary mask. The contour position is used to provide
an easy navigation between the segmented slices, which is especially helpful if
the contours are located in rotated orientations and which allows a convenient
amendment of existing contours.

Since the segmentation tools already support undo and redo of the user
interaction we implemented the same mechanism for the 3D interpolation. As
soon as a tool interaction is undone or redone the 3D interpolation will be
updated accordingly.

The latest interpolation result is displayed both in a 3D render window as
a 3D surface mesh and in 2D as the mesh’s intersecting contour. The user can
easily determine areas where the interpolation deviates significantly from the re-
gion of interest by navigating through the dataset, e.g. via dragging or rotating
the crosshair in the multiwidget and observing the intersection contour in the
different planar reconstructions. Fig. 3 shows the yellow 2D interpolation feed-
back during the segmentation of a kidney. The reason for the deviation in the
left image is that at this stage of the segmentation the number of the delineated
contours is not sufficient for a proper shape description of the kidney and hence
for a good interpolation result. By providing additional contours in such areas
using the manual segmentation tools it is possible to interactively refine the re-
sulting 3D segmentation. As soon as the user is satisfied with the interpolation
result the current surface can be written into the binary mask resulting in a
complete 3D segmentation of the considered region. Another requirement was to
have the possibility to save the current interpolation state and continue the 3D
segmentation e.g. after application restart. Therefore the segmentation session
can be saved as MITK scene file, including the grey value image, the segmenta-
tion binary mask and the corresponding contours. After loading the scene again
the contour information is then used to re-initialize the interpolation.

3.5 Unit testing and validation

To assure the quality of the implementation of the interpolation method within
the framework, unit tests were implemented which validate the interpolation
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Fig. 3. The correction of the interpolation result in a slice with significant deviation.
In the left window one can see that the yellow intersecting contour of the interpolated
surface deviates distinctly from the kidney in this slice, which is caused by the fact that
at this stage of the segmentation, insufficient contour information is provided in this
area of the image. The right window shows the surface intersection after an additional
contour was provided. The surface now runs closely along the kidney border.

pipeline for different structures, regularly comparing the results with reference
datasets within a continuous integration system. In addition, within the Work-
bench release process [2], several checklists are manually run through to verify
the correct interplay of the manual segmentation tools with the interpolation.

4 Evaluation

In this section we evaluate how our 3D segmentation performs regarding both
the computational time and the accuracy compared to expert segmentations.
The evaluation was performed on an Apple iMac with 3.4 GHz i7 processor
and 16 GB memory. Finally we present use cases in which the proposed 3D
segmentation was already applied successfully.

4.1 Results

For the evaluation we extracted automatically 2D slices from expert segmen-
tations of respectively three livers and gall bladders. The extraction was done
at four equidistant positions for each of the three reference anatomical planes
resulting in 12 slices added together. We then extracted the contour points from
each of the slices and used them as input for the 3D interpolation. The inter-
polation result was compared with the expert segmentations using the metrics
introduced by Heimann et al. [13]. The results are displayed in Table 1. The
positions of the extracted contours are shown in Fig. 4.

As we can see even a rather low number of 12 contours is sufficient for a
reasonable interpolation result with a volumetric overlap error less than 10%.
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Table 1. The results of the evaluation compared to expert segmentations of three
different livers and gall bladders. For the interpolation automatically four slices for
each of the three reference anatomical planes were extracted at equidistant positions.
Additional to the number of points (npoints) including the off-surface points also the
computation time was taken. Compared to the expert segmentations we evaluated the
mean and maximum surface distance and the volumetric overlap error.

Structure ID npoints Computation Mean Dist. Max. Dist. Vol. Overlap
time [s] [mm] [mm] Error [%]

Liver 1 1716 3.81 1.43 17.15 9.28
2 1944 5.26 2.00 41.10 9.0
9 2265 7.89 1.27 29.03 7.40

Gallbladder 1 537 0.47 0.44 4.12 6.65
2 453 0.33 0.41 4.35 8.01
9 351 0.29 0.39 3.00 9.96

Fig. 4. The positions of the contours, which are used for the interpolation during the
automated evaluation. From top down the datasets 1,2 and 9 are displayed with the
gall bladder on the left-hand side and the liver on the right. The contours are displayed
as black lines.
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4.2 Use cases

In this section we want to present use cases in which the proposed 3D segmen-
tation improved existing workflows.

First, it is a very efficient tool for the generation of ground truth segmen-
tations, a necessary prerequisite for the validation of semi- or fully automated
algorithms. Given the fact that these have to be created by experts with often
limited time, a high level of efficiency and usability can be an advantage.

One use case in which the proposed 3D interpolation is deployed is outlined in
the work of Mueller et al. “Mobile augmented reality for computer-assisted per-
cutaneous nephrolithotomy” [12]. In the proposed workflow 3D objects have to
be generated from pre-operative imaging in order to evaluate the intra-operative
guidance of the surgeon during the needle insertion. Using our interactive 3D
segmentation tool the kidney can be segmented reliably in 8 minutes, sufficiently
fast for the workflow.

Another case of application is mint Lesion5 an FDA approved MITK based
product which facilitates the assessment of the effectiveness of a cancer therapy.
It provides a tool called Interpolated Volume, which is re-using our publicly
available open source implementation.6

5 Discussion

Table 1 demonstrates that our method achieves good results. Unlike pure 3D
based segmentation algorithms our approach relies completely on user defined
2D contour information for interpolating a 3D surface. This gives the user full
control over the segmentation result at any time. Working on arbitrary orienta-
tions, our approach provides great flexibility for both the contour position and
the shape of the structure itself. As a result our method is independent from
the underlying imaging modality and applicable for basically any anatomical
structure, independent of its contrast or intensitiy values within the image. In
general the interpolation benefits from well placed contours, which describe the
shape of the region of interest in an optimal way. However Table 1 shows that
even with equidistantly placed contours a good result can be achieved.

In order to present immediate interpolation feedback several optimizations
were implemented like the reduction of the contour points. However since we
have to solve the linear equation system in (2) for interpolating the distance
function the memory consumption of O(n2) constitutes the limiting factor for
the number of contour points that can be used for the interpolation.

Moreover the computational costs for solving the equation system are high.
As we can see from Table 1 the interpolation slows down for an increasing number
of contour points. While the interpolation for the gall bladder with npoints < 600
is pretty fast with approximately 0.5s, the interpolation for the liver needs no-
ticeably more time with 8s for npoints > 2000 contour points. Since the global

5 mint LesionTM: Mint Medical GmbH, www.mint-medical.de, Heidelberg, Germany.
6 www.mitk.org
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interpolation has to be recalculated all over again after refining or adding con-
tours this constitutes a limitation regarding the usability. A way to address this
could be the usage of a more optimized solver for the linear system like it was
investigated by Heckel et al. [8]

6 Conclusion and future work

We introduced a fast, robust and versatile method for an interactive 3D segmen-
tation. During an in-house usability survey we identified certain key requirements
for an image segmentation application. These requirements influenced the design
and implementation of the proposed method.

The 3D interpolation on the one hand is seamlessly integrated into the seg-
mentation workflow of MITK. On the other hand it is completely independent
from the tools used for providing contour information, which facilitates the us-
age of any slice-based segmentation tool. Since simultaneously to the contour
information also the binary segmentation is used we can even interpolate hollow
structures. The fact that the user delineates the contour information manually
makes the proposed method independent from the underlying imaging modalities
and applicable to a large variety of anatomical structures.

Thanks to the introduced measures of usability like the position tracking
of the contours, undo/redo and the convenient way for navigating through the
datasets the user can easily find areas of significant deviation or amend existing
contours.

Although computation time increases for bigger structures the proposed
method already proved to be useful in various use-cases and workflows. The regu-
lar validation with unit tests and manual checklists during the MITK Workbench
release process guarantees a constant quality of the implementation.

Future work will include a feasibility evaluation for both, using the interactive
3D segmentation as an initialization method for non-interactive algorithms like
level-sets or shape-based techniques and as an efficient correction tool for the
results of automatic segmentation methods.

Furthermore we could improve the usability of our tool in different ways:
First, a possibility for pausing or explicitly triggering the interpolation would be
useful. That could address the drawback of the automatic recalculation of the
interpolation after every contour amendment. Second, since the quality of the
interpolation result depends on how well the user places the contours another
possible improvement could be a guidance for placing the contours similar to
TurtleSeg’s Spotlight.
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